Intermediate Python for Data Science covers the essentials of using Python as a tool for data scientists to perform exploratory data analysis, complex visualizations, and large-scale distributed processing on “Big Data”. In this course we cover essential mathematical and statistics libraries such as NumPy, Pandas, SciPy, SciKit-Learn, TensorFlow, as well as visualization tools like matplotlib, PIL, and Seaborn. This course is ‘intermediate level’ as it assumes that attendees have solid data analytics and data science background and have basic Python knowledge. Topics are introductory in nature, but are covered in-depth, geared for experienced students.